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ON EQUATIONS OF MOTION OF A NONLINEAR HYDROELASTIC STRUCTURE

P. 1. Plotnikov and I. V. Kuznetsov UDC 532.5:539.3

Formal derivation of equations of a monlinear hydroelastic structure, which is a volume of an ideal
incompressible fluid covered by a shell, is proposed. The study is based on two assumptions. The
first assumption implies that the energy stored in the shell is completely determined by the mean
curvature and by the elementary area. In a three-dimensional case, the energy stored in the shell
is chosen in the form of the Willmore functional. In a two-dimensional case, a more generic form
of the functional can be considered. The second assumption implies that the equations of motion
have a Hamiltonian structure and can be obtained from the Lagrangian variational principle. In a
two-dimensional case, a condition for the hydroelastic structure is derived, which relates the external
pressure and the curvature of the elastic shell.

Key words: free boundary, variational principle, ideal fluid, hydroelasticity, constraint forces,
Antman equation, Bernoulli law.

1. Equations of Motion in the Lagrangian Coordinates. A long list of publications on the theory of
nonlinear hydroelasticity can be found in [1].

The following notation is needed to formulate the model of a hydroelastic structure, which was first proposed
in [2] to describe waves on the surface of a liquid covered by an ice layer.

Let an ideal incompressible fluid at the time ¢ occupy a domain §2; in the Euclidean space of points @ =
(21,72, 73) € R3. In turn, the shell thickness is assumed to be small, and its mid-surface coincides with the boundary
of the flow domain as geometric positions of points.

We consider the Lagrangian variables & = (&1, &2, £3) determining the positions of material particles. Actually,
the coordinate £ is a label of a material particle chosen more or less arbitrarily.

We assume that the points & occupy a certain domain  C R? with a smooth boundary X. Then, the
positions of the fluid points are characterized by the vector field of displacements x(¢, &) (£ € §2), and the positions
of the shell particles are characterized by the field of displacements y(t, &) (€ € X).

In the initial-boundary problems, it is convenient to consider £ as the positions of material points at the
time ¢ = 0. In this case, we have ¢ = Q and 99y = 3. Thus, the boundary of the flow domain and the shell admit
two presentations:

Xz =w(t§), XY y=yt§) for £€X.

During the joint motion in the general case, the fluid may separate from the shell; hence, the surfaces ¥ and ¥¥
may fail to coincide. This effect is called the partial filling of the cavity by the fluid. In the present paper, the
effect is ignored, and further considerations are limited to the case with ¥ = X¥. The shell, however, may slip
with respect to the ideal incompressible fluid, which means that x(¢,&) # y(t,&) for £ € 3.

Let us recall the basic facts from the theory of surfaces. If the surface X locally admits parametrization
& = £(9) = &(q1, q2), then the normal vector n and the elementary surface area X have the following form in the
coordinates (g1, ¢2):
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n(é(q)) = \/190 00,8(q) X 04,€(7),  dX = /g0dq, /g0 = |05,8(q) % 0g,€(7)]-

If, at each time ¢, the moving surface ¥ admits parametrization

Y(tv q_)) = y(t7 5(67))7

then the vector of the outward normal to ¥ and the elementary area are described by the formulas

1 o -
U(tay(t75((j))) = 841Y(t?q) X 8‘12Y(t7Q)3 dz% = \/g;fy dq7

Ve

\/gy;y = }8111Y(t7 (j) X aihY(ta q‘)

The components of the metric tensor g;; (1 < ¢ and j < 2) and the components of the second quadratic form L;;
(I <iand j<2)are given by the equalities

(1)

Y XY,
i =Y, Y:), Lijj=(w,0,Y;), Y;=0,Y, = .
g] ( ]) J (V ag% J) a‘h v |Y'1XY'2|
The doubled mean curvature H is calculated by the formula
H = gL, (2)

where g = (g;;)".
Similar formulas describe the surface ¥, which coincides with 3 as the geometric set of points.
The motion of a nonlinear hydroelastic structure is characterized by the velocity fields

v(t,€) = 0x(t,€) for £e€Q, u(t, &) = oy(t,§) for & € 90Q,

where v is the velocity of the fluid particle and w is the velocity of the shell particle in the Lagrangian coordinates &;
(i =1,2,3). In addition, the motion is characterized by the density distributions in the corresponding components.

Without losing generality, we assume that the fluid density equals unity. The shell bounding the fluid is
compressible; therefore, it is necessary to use the formula for the density distribution in the shell. Let the density
distribution in the shell at the initial time in the Lagrangian coordinates be defined by the function go(€). This
means that the mass of an arbitrary part of the shell A C ¥ is determined by the equality

/Qo(é) dx.

A

The law of conservation of mass implies the equality

/ 00(€) S = / o(t,€) sV
A y(t,A)

which, in turn, yield the presentation

asyy\ -1 90(q)
Qt,€=9€( t) = 00(& - 3
For simplicity, we assume that the mass is uniformly distributed in the shell at the initial time, i.e., 0(0,&) =

00(€) = 1. Under these assumptions, the kinetic energy of the fluid K; and the kinetic energy of the elastic shell
K. have the form

K=, [ i) .
Q

1

K=, [ oot of st =, [ a
>

i
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Let us put forward the following hypotheses.

1. Equations that describe the nonlinear hydroelastic structure form a dynamic system with a configuration
space (z(t,-),y(t,-)) € A C L*(Q)? x L*(X)3 for t € (0,T).

2. The Lagrangian for the fluid has the form

L=, [ Pl oP .
Q

3. The Lagrangian for the shell has the form

1 .
L.= 9 /|8ty(t7£)|2 d¥ — W(Ety)v
3

where W (XY) is the stored (potential) elastic energy of the shell, which is defined in the form of a surface integral

Wt =, [ W/ob D ast; (4)
E'y

the vector of the mean curvature H = Hv and the unit vector of the outward normal v are described by Egs. (1)
and (2); dX¥ is the elementary surface area. This model of the shell is used in the nonlinear theory of elastic shells
(see [3]). It should be noted that the functional W (%¥) depends on the choice of the Lagrangian coordinates and
changes its form if the independent variables are replaced. Thus, presentation (4) depends on the choice of the
coordinate £ (this issue requires careful consideration in each particular case). In the linear theory of elasticity, this
problem does not arise, because the Lagrangian coordinates in this theory are chosen uniquely as the positions of
particles in a certain unloaded state. It is of interest to consider the case where the functional of the stored energy
is a geometric invariant and does not depend on parametrization chosen. In the class of functionals of the form (4),
there exists only one geometrically invariant representative with a nontrivial dependence on the external curvature,
namely, the so-called Willmore functional (see [4]):

- 1
Wit =, [Pt
Ey

The role of the Willmore functional in the elasticity theory was noted, e.g., in [3].

4. To derive the equations of motion, we need to describe all constraints imposed on the mechanical system
of motion. It is further assumed that there are two natural constrains. The first constraint is the principle of fluid
incompressibility, which is written as the equation

det Dex(t,€) =1 for £ €Q, (5)

where Dex is the Jacobi matrix of the mapping € — x(t,&). The second constraint reflects the coincidence of the
fluid surface and elastic shell as subsets of the Euclidean space in the course of their motion:

uy =Xt (6)
2. Configuration Manifold ©. Let us consider the hydroelastic structure as a dynamic system in a linear
space A consisting of infinitely differentiable vector fields (z(-),y(-)), where & : Q — R3 and y : ¥ — R3. We assume
that A has a Hilbertian structure L?(2)3 x L?(X)3. Under these assumptions, constraints (5) and (6) determine an
infinite-dimensional configuration manifold © C A. Having an induced metrics L%(2)? x L2(X)3, the space A is not
complete, and all further considerations have a formal character. The following lemma offers a description of the
tangential space to © at the point (x,y) € ©.
Lemma 1. The tangential space to the manifold © at the point (x,y) consists of all vector fields [0x(-), dy(-)],
dx: Q — R3 and dy: ¥ — R3, satisfying the equalities

div(M~'6x) =0 for €§e (7)

v(x(®(8))) - 5x(2(€)) = v(y(§)) - 0y(§)  for £€X, (8)

where M = Dexz(§) is the Jacobi matriz of the mapping & — x(&), and the diffeomorphism ®(-): ¥ +— X is defined
by the equality
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z(2(§) =y  for £eX. (9)

Note that the vector (0;x, dyy) for the trajectory of the dynamic system [z(t), y(t)] belongs to the tangential
space Tan(g,,) ©; hence, conditions (8) and (9) yield the relation

v(t,z(t,®(t,§))) - hx(t, ®(t,§)) = v(t,yt,£)) %yt §),
where x(t, ®(t,£)) = y(t,&) for £ € X.

Proof of Lemma 1. Let (z,y) € ©. We assume that M (§) = Dex(€) and |M| = det M = 1. Then, the

variation of the constraint equation (5) with respect to « has the form
S|M| =dive(M~'6z) =0  for &€,
whence there follows Eq. (7).

We introduce auxiliary functions «,, = x,(§) and y,, = y,(£) depending on the parameter p € (—1,1) and
generating the surfaces X% = x,(3) and X¥% = y,,(¥). The equality X* = ¥ allows the following conditions to be
imposed on the functions z, and y,:

To=x, Y=y  Zy=13
Hence, there exists a py-parametric family of mappings ®,: ¥ — ¥ such that

z,(2,(8) =yu.(§) for €€ (10)

In terms of the theory of Riemann manifolds, the functions @ = x(&) and y = y(&) are called isometric immersions
(see, e.g., [5]); @, and y, are the first-order infinitely small bendings of the immersions  and y, respectively:

Ty =T +pox+o(p), yu=y+pdy+o(u), o(u)/uw—0 for p—0

(0x and 0y are the first-order bending fields). By fixing an arbitrary value of & € ¥ and differentiating Eq. (10)
with respect to p at = 0, we obtain the relation between the bending fields

Dea(@o(€)) " (©)] _, +5(00(e)) = 3u(®). (1)

As the set {®,,(&)},,c(—1,1) is the curve on 3, then (d@u/du)(ﬁ)’ is the tangential vector to ¥ at the point ®¢(&).

Hence, Dex(®o(£))(dP,/dp)(€) . is the tangential vector to % at the point x(®((£)). Multiplying Eq. (11) in
=

a scalar manner by the normal vector to X at the point x(®¢(&)) = y(§), we obtain Eq. (8). In what follows, we
denote the diffeomorphism ®4: ¥ — ¥ by ®.

As a consequence of Lemma 1, we obtain the following statement for the structure of the space (Tan g 4 o)+
orthogonal to the manifold © at the point (x,y). Note, by virtue of the choice of the configuration space ©, the
space orthogonal to Tan(, ,) © at the point (x,y) € © consists of all vector fields [N (-), L(-)], N: Q@ — R? and L:
¥ — R3, satisfying the relation

/N(ﬁ) <ox(€) dE + /L(E) -0y(€)dx =0 V (dx, dy) € Tan(y ) O. (12)
Q >

The vector fields N and L are called the constraint forces.
Lemma 2. For each point (x,y) € O, the space (Tan(y, ) ©)* consists of the vector fields (N, L) such that

N(€) = (M"1)'Vep(§)  for €€,

L(&)z—gé) (P(®(E) + Cw(y(€) for Ec.

Proof. Let h € C5°(2) and dive h = 0. We choose (dx, dy) € Tan(, ) © in the following form: dx(§) =
M(&)h(£) and dy(€) = 0. Hence, Eq. (12) takes the form

/ N(€) - (M(€)h(€)) dé = 0.

As h is arbitrary, there exists a function p(&) such that
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N (&) = (M*)"'Vep(8). (13)

We choose an arbitrary vector I(€) orthogonal to the normal vector v(y(£)). In Eq. (12), we assume that
dx(€) =0 and dy(&) = 1(&). All tangential vectors I obey the equality

JEGRICEE
b
which yields the presentation of the constraint force

L(§) = M&) v(y(&))- (14)
We have to determine the form of the scalar function A = A(€). Let k be an arbitrary solenoidal vector field
C>°(Q) and 6z = M(€)(€) for & € Q and 5y(€) = (M o ®)(€)k 0 B(E) - v(w 0 B(E))) v(w o B(E)) for £ € 3.
Taking into account the equality v(z o ®(§)) = v(y(§)) for € € ¥ and substituting presentations (13) and
(14) of the constraint forces N and L to Eq. (12), we obtain the equality

/(Mk) (M*)"'Vep) d€ + / (A(S)((M oP)ko®) - v(xo @))u(m o®)-v(xrod)dL =0. (15)
Q )
As divg k = 0, we have

/ (Mk) - (M*)"'Vep) dé = / p(€)k - mdx, (16)
Q >

where n(&) is the unit vector of the outward normal to X:

n(€(7)) = 03, €(0) x 0,€(7)/V90(@), V' 90(7) = [0, €(7) % 05, €(7)| for € Q,

& = £(q) is local parametrization of 3.
Using Eq. (16), we write the first integral in the left side of equality (15) in parametric form as

/ PEK(E) - n(€) ds = / H@)k(@) - 7(T) V90 () .

by Q
where p(7) = p(&(7)), k(7) = k(€()), and 7(7) = n(£()). Then, Eq. (15) acquires the form
/]5((7 (@) \/go dq+/(Mo<I>)ko<I> V(o d)NE)dE = 0. (17)
Q by

To simplify the integrand of the second term in the left side of this equality, we find the relation between the vectors
n(€) and v(x(€)). Let X = X(¢) = x(£(7)). We recall that

v(@(£(7))) = 05, X(7) x 00, X (7)/V/97(@ V() = 00, X (@) X 00, X (7))
Then,

Zaqlfk ) 9, 2 (£(7)),

which implies that

a¢11 63 aq1 61

0p &1 0g &2
00 X % 0, X = | SurSt Yo
q1 X q2 ‘ » 53 aq2 61

aq2 61 8q2 62

Og, @ X Og, + ‘

Ogyx X Og,

a‘h 52 841 53

e e |damx dow = (0 x Oey5 06, @ % O, w5 0, % D3] (04, 6(0) ¥ 0,E(T)).

Note that
(M*)_l = [852.’1} X (95358; 85358 X 851.’1}; 8&158 X 852.’1}}.
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Hence, we obtain

M (9, X () % 09, X (7)) = (04, &(7) % 09,€(q)):
which yields the relation between the vectors n(€) and v(x(€)):

9%(q)
In this equality, we replace parametrization ¢ — W(g), where the diffeomorphism ¥: @ — @ satisfies the identity
D(&(7)) = &(P(F)). As a result, we obtain the relation

M* (@) v(@(E@))) = n(E(@)) \/ 90(7)

90(¥(9))
g°(¥(7))

Multiplying both sides of this relation in a scalar manner by k o ®, we obtain

(M* o @(&(7))) v(wo 2(£(7))) = n(£(¥(7))) \/

90(¥(7))
g (¥(7))

The second integral in the left side of Eq. (17) can be presented as an integral with respect to the parameter ¢

(Mo®@)ko® - v(zo®)=Fk((W(]))) - n(&(q’(i)))\/

/((Mocp)kocp) - v(x o B)A(E) d
>

-/ k(&(@(@)))-n(&(ﬂz@»\/ ) V@) NE(@) (15)
Q

We apply the replacement of the variables ¢ — ¥ = ¥(7) in the integrand in the right side of this equality. In the
new variables, the function &(q’) takes the form Z(7) = £ o U~1(7). As dX is a geometric invariant, we obtain

2 = \/g0(7) dG = \/Go(F) dr, \/GO(F) = |0r, E(7) x On, B(7)|.
From here and from Eq. (18), we find that

/(Mo‘b)ko‘b cv(xo®)A(E)dE

- _ 3 Go(q) s -
-n(q D& dq = 0.
[ra@) 00(@) (@) ¢ o e @)
Q
As k is an arbitrary solenoidal vector field, we have

[r©) nie) iz = [ k@ 7ld) vVoola) di=o.
= Q
Hence, there exists an unknown constant C' such that

MNEW @) = —\/ D e + ).

In the latter equality, we apply the replacement of the variables ¢ — ¥ (q):

ME@) = —\/ L ) (e @) + O, (20)
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To finish the proof of Lemma 2, it suffices to establish a relation between the fundamental forms ¢g® and
g¥. Tn the notation X(q) = 2(£(7)), Y(¢) = y(€(7)), and (£(q)) = £(¥(q)), the condition y(€) = @ 0 () is
written as

Y(q) = X(¥(q))- (21)
By differentiating condition (21) with respect to ¢; as
03, Y (7) = 04, V1(q) 0w, X (¥(7)) + 0, V(7)) 0w, X (¥(7)),
we obtain
Vg¥(T) = Vg (¥(7)) det Dy (q).
In the notation used, &£(¢) = Z(¥(q)), 7= ¥(7), and
0g, & X 0g, & = 0r 2 X 0,2 det D,U(q),
which implies that

Thus, we have

V(@) _ Ve (¥(@)) (22)
Using Egs. (20) and (22), we finally obtain

ME@) = M ) (e@) + ) = —\/ 0 (vo ate@) + )

which finalizes the proof of Lemma 2.

3. Variation of the Willmore Functional. In calculating the variation, we use the results of [6]. Let
y(+): ¥+ ¥ by a smooth immersion of the manifold 3 in R®. Let us recall the notation of parametrization of the
surface ¥¥: Y (7) = y(£(7)), where § = (¢*, ¢?). Let us consider a new immersion

Y(7)=Y(q)+ Y (q).

We decompose Y (¢') into the tangential and normal components:

Y =6)Y +6.Y =0'Y; + bv.
Then, the tangential variation of the functional W has the form

1 -
i 72 Yy _ i L2 Yy _ 3 2 Yy
5HW /\/y (v/g¥ 0'H?) d% /\/y i(VgY 0 H?) d¥ —2/d1v(9H)d2,
Sy

where 0 = (6,605). As the surface X% is closed we have 5|‘W(Ey) =0.
The normal variations of H, y/g¥, and dX¥ are calculated by the formulas

5Ld2y =—-0H dzyv 5L\/gy = _GH\/gya 5LH - Agyg + L”LUG,
where Ayy is the Laplace-Beltrami operator defined by the expression

A 0y (Vg¥97 0,s).

1
gy

The normal variation of the functional W (X¥) is determined as

S W (XY) = /M H2dxV) = /HalHdzy /H25L(d2y)

. 1
- / (H (A0 + LisL776) 29H3) dsv.
Ny
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We simplify the expression to

/ H(Agw0 + Li;L96)dYY = / 0(AgwH + Ly L H) d%¥ + / Vi (HV 4,0 — 0V, H)dSY.
p Yy Dy

As XY is a closed surface, we have

/ Vi (HV .0 — 0V, H) dS¥ = 0.
Ny

Hence,

1
SW(SY) = / (8, + (2 H? + R)H)0dsY,
Ny
where R is the scalar curvature of the surface ¥ satisfying the Gauss—Codacci equation
Ly L% = H?> + R.
4. Lagrangian Principle. Governing Equations of the Hydroelastic Structure. Now we can
derive equations of motion of the hydroelastic structure in the Lagrangian variables. For simplicity, we consider

the case where the stored energy of the shell is defined by the Willmore functional. The governing equations of the
hydroelastic structure with constraints can be derived with the use of the Lagrangian variational principle

6Ly — N(0x) + 6L, — L(3y) =0 (23)
for all smooth functions (&, dy). Here the linear functionals N and L are defined by the equalities
Nw) = [ N6 sxt&)ds. Loy = [ L&) ou(t. )
Q 5
(N and L are the constraints). Using Lemma 2 and the expressions 6Ly, L., and SW in explicit form, we write

Eq. (23) as
- [ (BFatt.e)+ 01 Ven(t.©)) - dw e

Q

_ / (at?y(t,g((j)) + (Ang + (;HQ + R)H) \/Zi v(t,y(t,€(7)))
Q

— (p(t, (¢, (D)) + c<t>>\/ W eyl €@)) by Vanda = 0.

Within the framework of Hypotheses 1-4 (see Sec. 1), the equation in variations (23) is equivalent to the
following boundary-value problem of the dynamics of the hydroelastic structure.

Problem A. We have to find time-dependent diffeomorphisms z(¢,-): Q +— Q; C R3 and y(¢,-): ¥ —
¥¥ C R3, a function p(t,-): Q— R, a function C(t), and a family of diffeomorphisms ®(¢,-): ¥ +— X satisfying the
following equations:

B, B(1E) = y(t,€)  for £ (24a)
v(t,z(t, (t,£))) - Oz (t, @(t,€)) = v(t,y(t, ) - Oy(t,§)  for €€ (24b)
0w (t, &) + (M~(t,€))* Vep(t, &) =0, det M = det Dex(t,€) =1 for &€ (24c)

o(t,£)07y(t, &) + (Agy H + (H?/2+ R)H)v(t, y(1,£))
= (p(t,2(t,€)) + CO))v(t, y(t,§)  for €€ (24d)

x(0,6)=¢& for £€Q, y(0,€)=¢&, 0(0,6)=1 for £e€X.
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Here H = H(t,y(t,&)) is the doubled mean curvature X¥ at the point y(¢, &) and v(t,y(t, £)) is the unit vector of
the normal to XY at the point y(t, £); the density of the elastic membrane is defined by the formula [see Eq. (3)]

dx 90(q)
ot.6) = oo byt &) =/ L. (24¢)
s, 9t (@)
and ¢ is an arbitrary local parametrization X.
5. Formulation of the Problem in the Eulerian Variables. In the Eulerian formulations, the functions
depend on the Cartesian coordinates @ = (21,22, x3) and the time variable ¢. Let us recall that the fluid occupies
the domain €, with the boundary X¥ at each time instant ¢ € [0,7]. Let

Qr= |J ux{t}, Sr=|J =Fx{t
te(0,T) te(0,T)

The vector of the normal to St is denoted by v = v(x,t), as in the Lagrangian coordinates. We use v(x,t) =
Orx(t,€(x,t)) to denote the fluid velocity and u(y,t) = d:y(t,£(y,t)) to denote the membrane velocity. Let the
material surface St of the domain occupied by the fluid be defined by the equation F(x,t) = 0. Hence, the fluid
velocity satisfies the kinematic condition

O F(x,t) +v- -V F(x,t) =0 for F(x,t)=0.

In the Eulerian formulation, it makes no sense to distinguish between x and y; hence, in what follows, we
use u(x,t) instead of u(y,t). Then, Eq. (24b) is written in the form

v(z,t) vz, t) =u(z,t) v(x,t) for (xz,t) € Sp.
Asv x Vg F =0and v-v = u - v, we obtain the second kinematic condition
O F(x,t)+u- Vi F(x,t) =0 for F(x,t) =0.

In the new notation, system (24c) is written in the form of the classical system of the Euler equations for the
dynamics of an ideal fluid

Ow+v-Vgegv+Vep=0, divyv =0 for (z,t) € Qr.
Equation (24d) for u acquires the form
pou+ pu-Vaou+ (AgeH + (H?/2+ R)H)v = (p+ C(t))v for F(w,t)=0.

Let us derive the transport equation for density. For this purpose, we involve several auxiliary facts of
differential geometry. If

x(t+7,€) = x(t,€) + Tu(z(t,€),t) + O(r?),

then the first variation of the surface area is written as

Vo] = (S ) Deu(w, 1) S 0}/ of.
where S(x,t) = I —v(x,t) @ v(x,t). Using the notation

divse u = tr {S(x,t) Dyu(zx,t)*S(x, 1)}, (25)
we obtain

- —?Z" D/ g7 (t.€) = —\/ ;’2 divss u = —p divss u,
t t

which yields the transport equation for density
Orp(x,t) +u(x,t) - Vep(z,t) + pdivss u = 0.

As a result, we obtain the following problem equivalent to Problem A.
Problem B. We have to find a curvilinear cylinder Q7 with the side boundary Sz, vector fields v: Qr — R3,
w: Sy — R3, and functions p: Q7 — R and p: St — R satisfying the following equations and boundary conditions:
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Osv +v-Vyv+ Vep =0, divy v =0 for (x,t) € Qr,
(26a)

pOru+ pu - Vau+ (Mg H + (H/2+ R)H )v = (p+ C@O)w  for Fla,t) = 0;

Otp+u-Vep+pdivse u =0 for F(x,t)=0,

26b
O F(z,t) +v- Vo F(x,t) = 0:F(x,t) +u- Vo F(x,t) =0 for F(x,t)=0. (26b)

Here the equation F'(¢,x) = 0 defines the surface St; the operator divse is defined by Eq. (25).
These equations have to be supplemented by the initial data:

Q = Qv Etm =3,
t=0 t=0

v(xz,0) = vo(x), divy vg =0, x €,
S(:B, O)u(.’l), O) = US(.’B), T < 27

p(x,0) = po(x), oSN
The presence of the potential mass forces
f(x) = =V Il(z)

does not exert any significant effect on the form of the equations. In this case, the Lagrangians L; and L. have the
form

Lo =, [0t P d¢ - [ e de.
Q Q

1 -
L=, [ o) ez - W) - [y(t.e)as.
by by
Hence, in the Eulerian formulation (26), Egs. (26a) are replaced by the equations

O+ v - Vav+ Vep+ VIl =0, divyv =0 for (z,t) € Qr,

PO+ pu- Vau + (Ago H + (H2/2 + R)H)u L VLIl = (p+ Ct)v for (x,t) € Sy

6. Two-Dimensional Motion. In the case of two spatial variables, the equations of motion become much
simpler. With allowance for applications to the problem of surface waves in a pool covered by an elastic film,
we assume that the domain ; occupied by the fluid has the form Q, = {# = T+ ng, x9 < n(x1,t)}, where
n =n(x1,t) is a function periodic with respect to the variable ;1. The surface 3; = {Z, 2o = n(x1,t)} is unknown
and is determined in the course of solving the problem.

By virtue of the assumed absence of separation of the shell from the free surface of the fluid [in the plane
(7,7)], the free surface of the shell admits parametrization

Y. ={y:y="7ts), s € R},
where the displacement vector 7(¢, s) is a pefiodic function of the Lagrangian variable s.
We consider auxiliary vectors @ and b and new functions « and j3:
O0sT P 0sa
057 |0’
Obviously, a - b=a-0,a=>5-9b=0. We can readily conclude that
Osb = @d - Osb = —@d.a-b = —a .

a::

a = |07, B = |0s@|.

In this notation, we have

JEE) =atts),  H= as(l 0.7 = L .= g
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Let Ty = {¢ = 7(t,s), 0 < s < 27}. Let us recall that 7(t, s) is a periodic function of the variable s. Without
losing generality, we assume that the following condition is satisfied.
CONDITION 1. At the initial time, the curve I'y is a straight line:

70, s) = si, 0<s<2m.

The density oo is already subjected to the condition of a uniform distribution of matter in the shell at the
initial time: g9 = 1. Under these conditions, the law of conservation of mass (24e) means that
1 1
t,s)= ., = . 27
0= o,z )] o )
Let us consider the Lagrangian function L. for the membrane
Le=K.—W(y) — Ep,

where K. is the kinetic energy, W(I‘t) is the stored elastic energy, and E, is the potential of energy due to gravity.
The kinetic energy of the elastic membrane is determined by the equality

27
1 1 )
K= /Q(t,s)|8tf'|2 dry =, /g(t,s)|6tf'|2a(t,s)ds - 2/|3tf|2d8.
r, FS /
In turn, the stored elastic energy W (I';) is presented as
27
) B
W(Ft (\/gt |H t S |) dly = ) W(a, a)ads.
0

The function E(\,0) = W(A,0) A is subJected to the condition of convexity with respect to the variable A.
For the gravity field § = —gj acting in the plane (¢,7) [§ = —V,IIy) and II(§) = gys], we calculate the
potential of energy due to gravity
2 2
B, = [ ot/ 9) Ty = [ ot s 5))alt, o) ds = [ 1, 5)) ds.
I, 0 0

We can easily see that the variations of the functionals K. and E, are determined by the equalities

27 27
SE, = g/j'- o7 ds, 0K, = —/aff'- o7 ds.
0 0

Calculating the variation of the functional of the stored elastic energy is a more difficult problem and requires
special consideration. For brevity, the sign of the dependence on ¢ is omitted.
We express a and 3 via new unknowns k and ¢:

a=./q, B =/qk.

Note that ¢ = |0s7|* and k = |05 |?/|0s7|?>. The expression for the integral functional of elastic energy takes the
form

W(Ty) = ; /F(q, k) ds,

where F(q, k) = W(\/q, \/k) v/q- Then, to find the variation

27 2w

ST/ (Ty) = ;5/F(q, k) ds — ;/(8qF5q+8kF5k) ds
0 0

it is sufficient to calculate dq and dk by the formulas
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where

It follows that

5q = 6]0,F|* = 20,7 0507 = 2,/q @ - D07,

_Josal o losal? L . 1 . L 2%k, .
ok =90 10,72 = -2 10,74 04T - 0507 + 2 0.7 2 0sd - 050 = ‘ 0T - 00T
+ 20,6 0.6a 2’“3542”58(185* @ aaﬂ))

s - Og0a = — a - 0g0Tr + Og sOT — a,0s0r
q Va Va Va V4
2%k VEk - 1 VEk - a
=G 0.0r+2 Y b0, 0.67) -2 " b0, @, 0567
Vi Vi (\/q ) Vi (\/q ( ))
2%k Vk - 1 2%k
=G 007 +2 " b-0,(  07) — 7 a- 0,67
V4 Va (WJ ) Va
4k VEk - 1
== G067 +2 " b0, 0567,
V4 V4 (\/q )
]_ 1 T BSF
§d = 0,07 —  @a-0.,0F,  0sd=/qkb, a= " .
V4 V4 Va V4
 F 7 2% 1k
) (5O/F(k,q) ds = 0/ ((\/qaqF— Y 8kF) = 85(%! aka)) - D,07 ds.
As 9,b = —\/qk @, this equality can be written in the form
27 27
1 k L1 VEk - .
) 50/F(k,q) ds = 0/ ((vad,F - e OnF )~ s as(\/q OF)F) - 0,07 ds.

Let us return to the variables a and 3 in the right side of this equality. If we introduce a new function £ = E(a, ()

as

E(a, B) = F(a?,3%/a?) = aW (a, B/),

then the expressions at the vectors @ and b are turned to

ﬂZ

a3

B

k
VGO F — Ja OLF = a04F — 02

8kF = ; 8aE(Oé,ﬂ),

Finally, we obtain

2m

SV (D)) = — / o, (v - ; (0.V)F) -7 ds
0

where U = 0, E(a, §) and V = dgE(, B).

Let the domain © occupied by the fluid at the initial time have the form {(£1,&2) € R?: & < 0}. Then,
the boundary of the domain 2 is R. Such a choice of the domain 2 is caused by Condition 1. We assume that
€ parametrization of the domain boundary Z(t,Q) is chosen so that |0, #(t,&1,0)] = 1 for & € R. Then, the
condition of the absence of separation of the elastic shell from the fluid surface takes the form

where S(t,-): R+ R is a family of diffeomorphisms. Let us differentiate this equation with respect to s:

#(t,5(t,),0) = 7(t,s),  s€ER,

|07 (¢, 5)|

355(ta 8) = |a€1f(t, S(t, 5)7 O)|

= |0s7(t,8)| =

0, F = ; 9E(a, B).

3

1

olts)
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In accordance with the Lagrangian variational principle, we obtain
85V T i -
027 — 0O, (ULT— ( N ) b) + g7 = a(p(t,S(t, s),0) + C(t))b,

where S(t,-): R — R is the diffeomorphism. For p = 0 and C' = 0, this equation coincides with Antman’s equation
[7]. Taking into account Eq. (27) for the density o, we write the last equation in the form

027 — 00,(Ud— 0(sV)b) + 097 = (p(t, S(t, 5),0) + C(t))b.

Repeating the reasoning of Sec. 5, we present the Lagrangian function for the fluid in explicit form:
1 e R
Li=y [10a.8)|d g [aa(2.6)dE
Q Q
Following the Lagrangian principle, we obtain

—

OFE(,E) + (MM t,0)"Vep(t,€) + 9] =0, M = Dei(t,€).

Summarizing the results of this section, we obtain the following problem.
Problem C. We have to find a field of displacements of the fluid #(¢,£) for £ €  and the field of dis-

=

placements of the membrane (¢, s), functions p(t,¢) and C(t), and diffeomorphism S(¢,-): R — R to satisfy the
equations

Z(t,S(t,s),0) =7(t,s) for seR,
b(t,s) - 9,Z(t, &1,0) (s~ bt,s) 0,7 (t,s)  for s€R,
1= t78
OFT(L,E) + (M1 (t,£)" Vep(t,£) + 97 =0,  det M(t,§) =1  for £€Q, (28)
0927 — 00,(Ud — 00,V b) + 09] = (p(t, S(t,5),0) + C(t))b  for s€R,

#0,6) =& for £eq, 70,5) = si, 0(0,s)=1 for sel0,27],

where
1

— & = 1 =
M=De(t,€), olts) = 5 20 01 = 0.8(ts)"

U = da(aW (a, B/a)), V = 0g(aW(a, B/a)),

L 07 - 0

a = ) b= PR

|01 |0sd|

We write Egs. (28) in the Eulerian coordinates. Note, as the function 7(¢, s) for a fixed ¢ is a 2m-periodic
function, we can present the vectors @ and b with the use of a new unknown function, which is the angle of

deformation (¢, s):

a=10,7, B=10d], Q=/{(,&)eR* & <0}

d:cosﬁﬂ—sinﬁf, gz—sinﬁf—#cosﬁj}
thereby, 0,0 = 8 = |0sd.
We use S to denote the arc abscissa on the curve I';. Then, we have
Iy ={y: y=2(t,S) =7t s(5,t))}.

As [0s@(t, S)| = 1, then S is a Eulerian variable. Hence, the expressions for velocity @ = (7, t), density p = p(&, 1),
and angle of deformation 0 = 6(S,t) of the elastic membrane have the form

= 3tf(t, S)

T=7(t,9)

s:s(S,t)7
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0(S,t) =0(t :
(S:8) =09 _ s

We introduce the notation

5(S,t) = al(t, ) = cos(0(S,t)) i +sin (0(S,1)) 7,

s=s(S,t)

(S, t) = b(t, s) s sin (6(S, 1)) + cos (0(S,1)) J.

By virtue of the kinematic condition on the free boundary, we have

Q@ff’(t,s)‘ = p (il + 1 Vil

s=const

F=const

We can readily see that

aft,s) ™! = p(Z, 1)

— 9.0 o1
s=s(5.1) 0s0(S,t) p(&,1) .

s=s(S,8) F=i(t,5)

= 83s(S,t), B(t,s)

F=a(t,9)

Note that the parametrization s = s(5,¢) was chosen with the aim of satisfying the equality

as\ )

S=const (%

s=const

In what follows, we use f’ instead of dsf to shorten the recording. Hence, we have
1 Voo - -
- V) = (e @y
!

o,(va
@
where P(p,0') = 8:E(1/p,0'/p) and Q(p,0') = D2 E(1/p, 8 /p); 81 and 9y denote differentiation with respect to the
first and second arguments, respectively.
Similar to derivation of the equations for Problem B, we obtain the following equations. The equation of
motion for the membrane in the Eulerian coordinates acquires the form

p(atm @-Vyid)— (P5— Q7Y +pgj = (p(Z,t) + Ct)A, T =37{89). (29a)
The function p satisfies the law of conservation of mass
Otp+U-Vyp+ pdivp, t =0 for &= Z(t,9). (29Db)
The pressure p and the fluid velocity ¥ = ¢/(Z, t) satisfy the equations
QU+ T-VoT+Vap+gj =0,  div,7=0,

where ¢ € (0,T); & belongs to a curvilinear half-plane bounded by the curve ¥ = #(¢,S5). Then, the constraint
equation (absence of separation) has the form

i-i=v-1  T=t59).

7. Steady-State Problem. Let us assume that the sought functions in the Eulerian coordinates are
independent of t. As @-7 = ¢ -7 =0 and & = Z(S) on the free boundary, the membrane velocity can be defined as
a product of the tangential vector and an unknown scalar function @ = @(S):

@ o Z(S) = u(9)5(9).
Then, the law of conservation of mass (29b) acquires the form
(50)(S) =0, (30a)

where p(S) = po Z(9).
In turn, Eq. (29a) takes the form

pu(as) — (P5— Q') + pgj = (p(F(S), 1) + C(t))i.

With allowance that 77’ = —'5 and § = 0’7, Eq. (29a) is written in projections as
pui! — P' — Q' + pgsinf = 0; (30b)
pul0 — PO + Q" + pgcos = p(Z(S)) + C. (30c)
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Equations (30a) and (30b) admit two integrals. The first integral follows from the law of conservation of
mass

p(S)a(S) = Cy = const.

Taking into account the general form of the functions P and @,

P(p,0) = 61E(,15, i) Q5.0 = agE(;, i)

we can turn the expression P’ + Q' to p¥’, where
o1 Loy ¢ 1o 1o
N _
W(5,0) = ﬁ&lE(ﬁ, ﬁ) + aQE(ﬁ, ﬁ) B(0).
As Z(S) = (21(S), 22(5)) and #4(S) = sinf(S), Eq. (30b) can be written as
d 1 ~
p (2ﬂ2+\11(ﬁ,9’)+gx2):0,

Pds
whence there follows the second integral

@%)2 = Cy— W(p,0) — gra.
8. Bernoulli Law. The following expressions are valid on the free boundary @ = x(95):
p(S)u(s) = Cy,

o (31a)
u(S)? = Cy — 20(5(9),6(S)) — 2ga(S):

PS)a(9)*0'(S) + (P(5(S), 8'(5))0'(5)) — (Q(A(S), 8'(5)))" + 5(S)g cosB(S) = p(@(S)) + C (31b)

S is the arc length and 6'(S) is the curvature]. Resolving the algebraic system (31a) with respect to the quantities j
and @ and substituting them into Eq. (31b), we can obtain one dynamic condition relating the boundary curvature
6’ to the pressure p.

This work was supported by the Russian Foundation for Basic Research (Grant No. 07-01-00309) and
Program of Integration Fundamental Research of the Siberian Division of the Russian Academy of Sciences (Grant
No. 2.1).
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